385 research outputs found

    Observation of fine one-dimensionally disordered layers in silicon carbide

    Get PDF
    The improved resolution of synchrotron edge-topography is enabling thinner (less than 100 microns), silicon carbide crystals to be studied, and is providing a more detailed and wider database on polytype depth profiles. Fine long-period and one-dimensionally-disordered layers, 5-25 microns thick, can now be confidently resolved and are found to be very common features, often in association with high-defect density bands. These features are illustrated in this paper using three examples. A new long period polytype LPP (152H/456R) has been discovered and reported here for the first time

    Raman spectroscopy of epitaxial graphene on a SiC substrate

    Full text link
    The fabrication of epitaxial graphene (EG) on SiC substrate by annealing has attracted a lot of interest as it may speed up the application of graphene for future electronic devices. The interaction of EG and the SiC substrate is critical to its electronic and physical properties. In this work, Raman spectroscopy was used to study the structure of EG and its interaction with SiC substrate. All the Raman bands of EG blue shift from that of bulk graphite and graphene made by micromechanical cleavage, which was attributed to the compressive strain induced by the substrate. A model containing 13 x 13 honeycomb lattice cells of graphene on carbon nanomesh was constructed to explain the origin of strain. The lattice mismatch between graphene layer and substrate causes the compressive stress of 2.27 GPa on graphene. We also demonstrate that the electronic structures of EG grown on Si and C terminated SiC substrates are quite different. Our experimental results shed light on the interaction between graphene and SiC substrate that are critical to the future applications of EG.Comment: 20 pages, 5 figure

    Culinary FEVER (Food Emissions Visualization Education Resource): A Unique Educational Tool To Empower The Public To Reimagine Food Choices For Environmental Sustainability

    Get PDF
    This paper provides an educational tool to help the public better understand the greenhouse gas (GHG) emissions from the food they choose to eat on a daily basis. Using balloons filled with the representative volume of GHGs emitted through the growth, harvest, production, and transportation of various food choices, participants are able to visualize the impact of their food choices without the burden of analyzing a graph or table. Additionally, displaying the typical GHG metric of equivalent kilograms of carbon dioxide (kg CO2e) in the volume this gas would occupy at standard pressure and temperature allows for greater clarity in these results. Distribution methods for this visualization tool described herein range from science classrooms to Science, Technology, Engineering, and Mathematics (STEM) outreach events and to restaurants and grocery stores. Several tools are provided as part of this research, including a spreadsheet that incorporates these calculations, presentation slides, a worksheet for the in-class method,and poster images for eateries. For each method, participants are asked to select a protein, vegetable, and starch option to fill their plate and the resulting GHG volume is then calculated based on their selections. This provides context and allows for discussion and reshaping of our contributions to climate change

    Feasibility and results of a randomised pilot-study of pre-discharge occupational therapy home visits

    Get PDF
    BACKGROUND: Pre-discharge home visits aim to maximise independence in the community. These visits involve assessment of a person in their own home prior to discharge from hospital, typically by an occupational therapist. The therapist may provide equipment, adapt the home environment and/or provide education. The aims of this study were to investigate the feasibility of a randomised controlled trial in a clinical setting and the effect of pre-discharge home visits on functional performance in older people undergoing rehabilitation. METHODS: Ten patients participating in an inpatient rehabilitation program were randomly assigned to receive either a pre-discharge home visit (intervention), or standard practice in-hospital assessment and education (control), both conducted by an occupational therapist. The pre-discharge home visit involved assessment of the older person's function and environment, and education, and took an average of 1.5 hours. The hospital-based interview took an average of 40 minutes. Outcome data were collected by a blinded assessor at 0, 2, 4, 8 and 12 weeks. Outcomes included performance of activities of daily living, reintegration to community living, quality of life, readmission and fall rates. RESULTS: Recruitment of 10 participants was slow and took three months. Observed performance of functional abilities did not differ between groups due to the small sample size. Difference in activities of daily living participation, as recorded by the Nottingham Extended Activities of Daily Living scale, was statistically significant but wide confidence intervals and low statistical power limit interpretation of results. CONCLUSION: Evaluation of pre-discharge home visits by occupational therapists in a rehabilitation setting is feasible, but a more effective recruitment strategy for a main study is favored by application of a multi-centre setting

    Proceedings of the 3rd BEAT-PCD Conference and 4th PCD Training School

    Get PDF
    Abstract Primary ciliary dyskinesia (PCD) is a chronic suppurative airways disease that is usually recessively inherited and has marked clinical phenotypic heterogeneity. Classic symptoms include neonatal respiratory distress, chronic rhinitis since early childhood, chronic otitis media, recurrent airway infections leading to bronchiectasis, chronic sinusitis, laterality defects with and without congenital heart disease including abnormal situs in approximately 50% of the cases, and male infertility. Lung function deteriorates progressively from childhood throughout life. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The third BEAT-PCD conference and fourth PCD training school were held jointly in February 2018 in Lisbon, Portugal. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting

    Genetic analysis reveals a hierarchy of interactions between polycystin-encoding genes and genes controlling cilia function during left-right determination

    Get PDF
    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo
    corecore